Wednesday, February 20

Binary Number Representation


The binary numeral system, or base-2 number system, represents numeric values using two symbols, 0 and 1. More specifically, the usual base-2 system is a positional notation with a radix of 2. Owing to its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by all modern computers.

Understanding Binary Logistic Regression is always challenging for me but thanks to all math help websites to help me out.

The representaion of binary numbers are uses in mathematics are defined as follow,

Binary numbers representation in math:

In the binary number representation consists of octal, decimal, and hexa decimal numbers in the column. We can be represent the binary numbers by use of its operation. In the binary number representation, the decimal is easiest method of understanding binary numbers.

For example we can represent: 4567,

4 is represent the 1000’s

5 is represent the 100’s

6 is represent the 10’s

7 is represent the 1’s

Which means the representaion of 4567 is given as follow,
4567 = 1x1000 + 2x100 + 3x10 + 4x1

Given binary number representation,

1000


= 103 = 10x10x10

100


= 102 = 10x10

10


= 101 = 10

1


= 100 (any number to the exponent zero is 1)

The table above can be represented as the binary numbers,

Such that,

4567 = 4x1000 + 5x100    + 6x10     + 7x1

= 4x103 + 5x102 + 6x101 + 7x100

Examples for binary number representation in math:

The examples of binary number representation in math is given as follow:

Example:1

To determine the decimal number in 10102?

Solution:

Step 1: 1 => 1×2×2×2 = 8

Step 2:  0 => 0×2×2 = 0

Step 3: 1 => 1×2 (=2)

Step 4: 0 => 0

Answer is: 1010 = 8+0+2+0 = 10.

Example 2:

To determine the decimal number in 10112?

Solution:

Step 1:  1=> 1×2×2×2 (=8)

Step 2: 0 => 0×2×2 (=0)

Step 3: 1 => 1×2 (=2)

Step 4: 1 => 1

Answer is: 1001 = 8+0+2+1 = 11.

My forthcoming post is on how to find the prime factorization of a number and neet entrance exam syllabus will give you more understanding about Algebra.

Example 3:

To determine the decimal number in 1.112?

Solution:

Step 1:  1 => 1

Step 2:  1 => 1×(1/2)

Step 3: 1 => 1×(1/4)

Answer is :1.75.

Example 4:

To determine the decimal number in 11.112?

Solution:

Step 1: 1 => 1×2 (=2)

Step 2: 1 => 1

Step 3:  1 => 1×(1/2)

Step 4: 1 =>  1×(1/4)

So, 11.11 is 2+1+1/2+1/4 = 3.75 in Decimal

Answer is: 3.75.

No comments:

Post a Comment